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Front propagation of spatiotemporal chaos
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We study the dynamics of the front separating a spatiotemporally chaotic region from a stable steady region
using a simple model applicable to periodically forced systems. In particular, we investigate both the coars-
ening of the front induced by the inherent ‘‘noise’’ of the chaotic region, and the long wavelength dynamics
causing the front to develop cusps.
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I. INTRODUCTION

In this paper we study the dynamics of the front sepa
ing a spatiotemporally chaotic state from a stable steady
dered state. Such situations occur in many experimental
tings. In an experiment on a vertically vibrating granu
monolayer of spheres@1# both a state at rest on the plate a
a chaotically bouncing state are stable. When a small pe
bation is applied to the stationary state, the chaotic stat
observed to invade the stable state through a propaga
front. In a Rayleigh-Be´nard convection experiment@2# both
straight rolls and spiral defect chaos are stable under s
conditions and it is observed that a region of straight rolls
invaded by a region of spiral defect turbulence.

For our study we employ a type of model called a co
tinuum coupled map~CCM! introduced in Ref.@3#. Models
of this type ~Sec. II! are appropriate to periodically force
systems~such as that in the experiment of Ref.@1#!. In com-
mon with other generic models, like the complex Ginzbu
Landau equation or the Swift-Hohenberg equation, CC
models are meant to incorporate the minimal basic prope
capable of reproducing the phenomena of interest. With
in mind we construct our CCM model to incorporate t
essential feature that both a stable steady homogeneou
tractor and a spatiotemporally chaotic attractor exist. Us
our CCM model, we numerically investigate two pheno
ena: ~i! the coarsening of the front due to the inhere
‘‘noise’’ associated with the spatiotemporal chaos~Sec. III!,
and ~ii ! cusp formation induced by initial long waveleng
perturbations of the front location from the flat state~Sec.
IV !.

With respect to~i!, an important concept used to stud
various coarsening processes is scaling. For a large num
of systems~e.g., see Ref.@4#!, it is found that the interface
width due to roughening,w(t), increases as a power of tim
w(t);tb. The width eventually saturates at a value that
creases as a power of the system size,w(Lx);Lx

a . These
scaling properties are also observed in our model, and
determine and discuss the scaling exponentsa andb that we
find.

With respect to~ii !, we argue that on a long scale@i.e.,
long compared tow(t)#, our fronts propagate at consta
speed in a direction locally normal to the interface. We sh
that this basic property explains the mechanism of cusp
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mation and the evolution of the shape of the fronts obser
in our numerical simulations.

II. MODEL

As in Ref. @3#, we consider a CCM model that maps
field jn(xW ) forward from timen to timen11. With reference
to a system driven periodically in time~e.g., as in@1#!, we
may think of jn(xW ), with n51,2, . . . , asbeing the system
state stroboscopically sampled once each period. Furt
more, we considerxW5(x,y) to be two dimensional and, fo
simplicity, we takejn to be a scalar field. The CCM mode
mappingjn to jn11 consists of two steps: The first step is
nonlinear local operation in which a one-dimensional mapM

is applied tojn(xW ) at each point in space,

jn8~xW !5M „jn~xW !…. ~1!

The second step is a translationally invariant linear opera
coupling the dynamics at nearby spatial locations. The m
general such coupling is conveniently expressed in term
the spatial Fourier transform. Ifĵn(kW ) is the spatial Fourier
transform ofjn(xW ), then we writeĵn11(kW ) as

ĵn11~kW !5 f̌ ~kW !ĵn8~kW !, ~2!

from which jn11(xW ) is obtained by inverse Fourier trans
forming.

The model is then specified by the choice of the nonlin
mapM and the linear spatial couplingf̌ (kW ). We make these
choices so as to include the minimum properties that
hypothesize are relevant for the investigated phenomena@5#.
Since we desire the simultaneous existence of a stable st
state as well as a spatiotemporally chaotic state, we cho
the mapM to have a stable fixed point attractor and a chao
attractor. A convenient choice having this property is giv
by

M ~j!5r j1A exp@2~j21!2/s2#2A exp~21/s2!. ~3!

Referring to Fig. 1 we see that this map has a stable fi
point atj50 for r ,1. Moreover, any initial point inj,u is
attracted to this point. We also see from Fig. 1 that the
terval u,j,v is mapped into itself. Thus there is~at least!
©2001 The American Physical Society15-1
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one attractor in this interval. For the parameter valuesA,r ,
and w that we investigate (A57.0,r 50.4,s50.29) there is
one attractor inu,j,v and it is chaotic.

Our choice of the spatial couplingf̌ (kW ) is similarly moti-
vated by a desire for simplicity. We assume that the coup
is isotropic. Thus we can writef̌ as f̌ (kW )5 f (k), where k

5ukW u. Taking f (k)>0 we write

f ~k!5exp@g~k!#, ~4!

where g(k) is a wave-number-dependent growth and
damping rate per period. Since we want the spatiotemp
chaos to have a finite spatial correlation scale, such a s
must be reflected in our choice ofg(k). Denoting this scale
by k0

21, we make the following simple choice@3# for g(k):

g~k!5
1

2 S k

k0
D 2F12

1

2 S k

k0
D 2G . ~5!

Thus g(k).0 ~growth! for k,k0 , g(k) has its maximum
value atk5k0, andg(k) becomes strongly negative~damp-
ing! ask becomes large.

Our numerical implementation of this CCM model em
ploys doubly periodic boundary conditions with periodici
lengthsLx in x and Ly in y. The nonlinear map operator i

FIG. 1. Schematic~not to scale! of the model map.
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applied at points on a square grid, while the spatial coupl
operator~2! employs fast Fourier transforming fromxW to kW
and back.

Thatj(xW )50 is an attractor can be seen by introducing
initial perturbation at wave numberkW ,dj0exp(ikW•xW). Linear-
ization of the CCM model aboutj0(xW )50 then shows that
this perturbation evolves with time todjnexp(ikW•xW), where
djn5dj0@M 8(0) f (k)#n,M 8(j)[]M /]j. For the param-
eters we chooseM 8(0) f (k),1 for all k @in particular
M 8(0) f (k0),1#. Thus the homogeneous statej(xW )50 is an
attractor for the system. We also find that, as we had an
pated, for other initial conditions there is another attrac
which is spatiotemporally chaotic.

Figure 2 shows the properties of the spatiotemporal ch
produced by our model. Figure 2~a! shows the spatial patter
jn(xW ) at a representative time. This picture applies to a ti
n545 evolved from an initial condition wherej0(xW ) was
chosen randomly with uniform distribution betweenj050
andj057.5. Visually, we observe that the pattern appears
have a characteristic scale of the order ofk0

21. This is con-
firmed by the wave number power spectrum, Fig. 2~b!. We
note that the only length scales in our model arek0

21, the
system sizeL;Lx;Ly , and the grid sized, and that, by our
choiceL@k0

21@d, we had sought to obtain spatiotempor
chaos with properties independent ofL and d. Figure 2~b!,
which evidences variation on the scalek0, conforms with this
expectation. Further discussion of the form observed
u ĵ(k)u2 is given in the Appendix. To characterize the temp
ral variation of the patterns, Fig. 2~c! shows a plot of the
time correlation functionC(t) defined as

C~t!5
1

NxNy
(
i , j

NxNy

Ci , j~t!, ~6!

Ci , j~t!5
^~j i , j~ t1t!2 j̄ i , j !~j i , j~ t !2 j̄ i , j !&

^j i , j
2 ~ t !2 j̄ i , j

2 &
, ~7!

where^ . . . & means time average,j̄5^j&,Nx,y5Lx,y /d, and
( i , j ) denotes the (x,y) location of a grid point. As can be
seen from Fig. 2~c! the time correlation function decays t
zero with increasing timet ~wheret is an integer!, confirm-
ing that the temporal behavior is chaotic. We have also
amined other parameter values for which~1!–~5! yields spa-
tiotemporal chaos, and we find behavior similar to that
Figs. 2.
-

FIG. 2. Spatiotemporal chaos of the CCM
model for A57.0, r 50.4, andw50.29. ~a! A

snapshot ofjn(xW ). Bright regions indicate large
amplitude.~b! Wave number power spectrum, av

eraged over 100 frames.ĵ(kW ) is the Fourier trans-

formation of j(xW ). ~c! Time correlation function
C(t), Eq. ~7!.
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III. PROPAGATION OF A FLAT FRONT

The main objective of our investigation is to character
the dynamics of the interface between a spatiotempor
chaotic state and a stable steady state. In our first se
simulations we focus on an initially flat interface,y5y0 at
t50. After we generate an initial spatiotemporally chao
state@Fig. 2~a!#, we create the interface by setting the amp
tudej of all grid points withy,y0 to the stable steady stat
value j50. During further iterations, the front between th
chaotic and steady state moves downward, i.e., the cha
state propagates into the stable steady state, and the
coarsens~see Fig. 3!. In order to examine the front dynamic
for long times and save computational time, we use a shif
method: On every iterate, we resetj to zero in the region
adjacent to the bottom (y50) of the periodic box, and, whe
the front comes close toy50, we shift the whole system
upward in they direction. Due to the periodic boundary co
ditions, after this shift there will be a region below the fro
and abovey50 that is in the spatiotemporally chaotic r
gime, and we then setj50 in this region.

After an initial transient, the scaling properties of the fro
are studied using the following definition of the interfa
width. First, we calculate the average value ofj at fixed y,
j̃(y)5*0

Lxj(x,y)dx/Lx . We then note that the basin boun
ary between the two attractors of the one-dimensional maM
is at the unstable fixed point,u50.4824~Fig. 1!, and that the
averagej for the spatiotemporally chaotic state@Fig. 2~a!# is
approximately four times the critical value. Thus, we defin
lower boundary of the front,y1, by j̃(y1)5u and an upper
boundary of the front,y2, by j̃(y2)53u. The width of the
front is then defined as (y22y1).

Because of the inherent ‘‘noise’’ generated in the s
tiotemporally chaotic region, the proper quantity to study
the ensemble averaged mean of the front widths. We ca
late ensembles using many different random initial con
tions. Our results for the ensemble averaged widthw of the
front are obtained by averaging (y22y1) over ten runs for
the largest systemLx51024 and over 500 runs for the sma
est Lx564. The typical coarsening of the front is shown
Fig. 3.

One observation from our simulations is that the propa
tion velocity of fronts is constant, except for a few transie
initial iterations. That is, the velocity does not depend
time or system size. A constant propagation front velocity

FIG. 3. Coarsening of a flat front.Lx51024.
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also observed in the experiments in Refs.@1# and @2#. To
minimize the effect of the initial transient, we redefine tim
as the total increase in the area of the chaotic state.

As is typical for a front coarsening problem@4#, the time
and system size dependence of the mean front widthw can
be described by a scaling functiong(u),

w~ t !5tbgS t

Lx
zD . ~8!

Hereg(u) is constant foru!1 andg(u)'u2b for u@1. For
t@Lx

z , the width saturates atw;Lx
a where a5bz is the

roughness exponent. Baraba´si and Stanley@4# have summa-
rized the values of the scaling exponentsz, a, andb that are
obtained for several experimental systems as well as rele
theoretical results.

In Fig. 4~a! we showw versust for different system sizes
These data show two characteristic regimes: power
growth, followed by saturation. The growth exponentb is
calculated by measuring the slopes of straight line fits to
data before saturation, and the roughness exponenta is cal-

FIG. 4. Scaling of width with the size~a! unscaled and~b!
scaled witha50.49, z51.81 from whichb5a/z50.27. Circles
(Lx564), diamonds (Lx5128), squares (Lx5256), triangles (Lx

5512), and stars (Lx51024). Ly5256 for all cases.
5-3
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FIG. 5. Geometrical picture of
the trajectories given by Eqs.~10!
and ~11! ~a! for t,tc and ~b! for
t.tc .
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culated by comparing the saturation widths. Figure 4~b!
showsw/Lx

a versust/Lx
z , wherea andz have been adjuste

to a50.49 andz51.81 ~corresponding tob5a/z50.27).
Consistent with Eq.~8!, we find the collapse of the data i
Fig. 4~a! to a single scaling function. The exponent valu
we obtain are roughly consistent with those of both the tw
dimensional Eden model (a>0.5,b>0.3) and the two-
dimensional Kardar-Parisi-Zhang equation (a51/2,b51/3)
@4,6#.

IV. EVOLUTION OF A NON-FLAT FRONT

We now consider the evolution of a front on large leng
scale. Specifically, we are interested in the case where
front is initially not flat; that is, the position of the front i
initially given by y05h(x0). Furthermore, we assume tha
as the front evolves, the scale on which the front posit
varies,l'(h/h8), remains large compared to the front widt

l @w. ~9!

To analyze this situation, we consider that a point on
front moves with a normal velocityvW whose magnitude
uvW u5v, is constant in time. This assumption also implies t
the direction ofvW following the trajectory of a point on the
front is constant in time. This is because the slope of
front, dx/dy, following a trajectory does not change wit
time; i.e., it depends only on the initial locationx0 on the
front and not ont. This is illustrated by the construction i
Fig. 5~a!. As shown in the figure, the trajectory line segme
are straight, are all of the same lengthvt, and are normal to
both the initial front and to the evolved front. Considering
initial front position given byy05h(x0), propagation at a
velocity vW normal to the front then yields

x~ t !5x02~vt !h8~x0!@11„h8~x0!…2#21/2, ~10!

y~ t !5h~x0!2vt@11„h8~x0!…2#21/2. ~11!

At any given time Eqs.~10! and ~11! specify the front posi-
tion parametrically withx0 as a parameter. As an examp
consider the case of an initial sinusoidal undulation of
front y05h(x0)5C cos(kx0). As the front propagates, th
initial sinusoidal curve becomes distorted so that the max
become sharp and the minima become broad. As can be
from Fig. 5~a! this arises because of the converging~diverg-
ing! of trajectories that originate near maxima~minima!.
01621
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Past a critical timet5tc a cusp develops at the maxima
the evolved front@7#. The cusp formation time is determine
by noting thatdx/dx0 first becomes zero att5tc . From Eq.
~10! we obtain

tc5
1

k2Cv
. ~12!

For t.tc there are pairs of values ofx0 for which the trajec-
tories given by Eqs.~10! and ~11! pass through each othe
For a given timet greater thantc we refer to the range ofx0
for which this occurs as the unphysical range. The devel
ment of the unphysical range is illustrated in Fig. 5~b! where
the dashed portion of the curve shows the result of plott
Eqs.~10! and ~11! for the unphysical range.

Figure 6 shows how cusps develop in time. In Fig. 6 t
noisy front curves are from our simulations and the smo
curves are from Eqs.~10! and ~11! with x0 restricted to the
physical range. The two cases shown in Fig. 6~namely,Lx
5Ly5128 andLx5Ly51024) illustrate how front roughen
ing becomes of less influence as Eq.~9! becomes better sat
isfied. For both cases in Fig. 6 the initial sinusoid has am
tude kC51 and wave numberk54p/Lx . Thus from Eq.
~12! we havetc;1/k;Lx . At timest;tc , the roughening is
a small effect if kw(tc) is small. Sincew;tb ~assuming
t/Lx

z&1), we see thatkw(tc);1/Lx
12b , and roughening will

be inconsequential for the large scale front evolution ifLx is
sufficiently large. The good agreement of theLx51024 nu-
merical results from our CCM model with the theory, Eq
~10! and ~11!, confirms that the front does indeed propaga
at constant velocity in a direction perpendicular to the int
face. In particular, for long length scalesl @w examined in
Fig. 6 we see no evidence for curvature dependence of
front velocity.

FIG. 6. Comparison between theoretical curves and our
simulations for two different system sizes. The front curve from o
model is defined as the smallesty value ~for given x) at which j
5u, where u50.4824 is the basin boundary point depicted
Fig. 1.
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As a comparison, we have also considered the propa
tion of a front between two steady homogeneous states
particular, replacingM (j) in Eq. ~3! by

M ~j!50.11tanh~2j!, ~13!

we see~Fig. 7! that there are two stable fixed points,a and
b, and one unstable fixed pointu. Using Eqs.~13!, ~2!, and
~5! with a sinusoidal front with initialization ofb above the
front and ata below the front, we find that the front shap
evolves smoothly~with no roughening! according to Eqs.
~10! and ~11!. Thus the cases of a chaotic invading regi
and a nonchaotic invading region become similar for la
Lx ~e.g.,Lx@w@1/k0).

In conclusion, we have introduced a continuum coup
map model for the study of the dynamics of a front sepa
ing a region of spatiotemporal chaos from a stable ste
region. This model is applicable to periodically forced sy
tems. We find that the front roughens and that this coars
ing obeys a scaling hypothesis, Eq.~8!. We also investigate
the large length scale evolution of a nonplanar front. We fi
that this evolution is consistent with the hypothesis that,
large scale, the front velocity is constant and normal to
front. This hypothesis and our numerical simulations indic
the formation of cusp structures in the front.

FIG. 7. The map Eq.~13!.
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APPENDIX

We now comment on the specific form that we ha
found for u ĵu2 @Fig. 2~b!#. In this connection we note that in
the limit of a wildly varying mapM (j) with the Lyapunov
exponent approaching infinityjn8(xW ) will be wildly varying

in space. This is because small variations ofjn(xW ) with xW are
greatly amplified whenM is applied. Thus, in this limit, the
spatial correlation function forjn8(xW ) will be a d function,

and u ĵn8(k)u25^(jn8(xW ))2& independent ofkW . Thus from Eq.
~2!

u ĵ~k!u25^~jn8~xW !!2& f 2~k!, ~A1!

which is plotted in Fig. 8 as the dashed line along with t
data from Fig. 2~b!. It is seen that Eq.~A1! provides a crude
indication of the general form ofu ĵ(k)u2.

FIG. 8. u ĵu2 versusk compared with Eq.~A1!.
dou-
le
ob-

rns
er

ua-
@1# W. Losert, D.G.W. Cooper, and J.P. Gollub, Phys. Rev. E59,
5855 ~1999!.

@2# I.V. Melnikov, D.A. Egolf, S. Jeanjean, B.B. Plapp, and
Bodenschatz, inStochastic Dynamics and Pattern Formatio
in Biological and Complex Systems, edited by S. Kim, K. J.
Lee, T. K. Lim, and W. Sung, AIP Conf. Proc. 501~AIP,
Woodbury, NY, 2000!, p. 36.

@3# S.C. Venkataramani and E. Ott, Phys. Rev. Lett.80, 3495
~1998!.

@4# A.-L. Barabási and H. E. Stanley,Fractal Concepts in Surface
Growth ~Cambridge University Press, Cambridge, 1995!.

@5# This general viewpoint was also adopted in Ref.@3# where,
motivated by experimentally observed phenomena@F. Melo,
P.B. Umbanhowar, and H.L. Swinney, Phys. Rev. Lett.75,
3838~1995!#, other choices forM andf were employed. In that
case the objective was to check the hypothesis that period
bling in conjunction with pattern formation at a preferred sca
were the essential ingredients necessary to explain the
served bifurcations and the evolution of time periodic patte
occurring in a vertically oscillated granular layer of the ord
of 10 grains thick.

@6# M. Kardar, G. Parisi, and Y.C. Zhang, Phys. Rev. Lett.56, 889
~1986!.

@7# Cusp formation also occurs for the Kardar-Parisi-Zhang eq
tion; see Fig. 1 of Ref.@6#.
5-5


