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Front propagation of spatiotemporal chaos
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We study the dynamics of the front separating a spatiotemporally chaotic region from a stable steady region
using a simple model applicable to periodically forced systems. In particular, we investigate both the coars-
ening of the front induced by the inherent “noise” of the chaotic region, and the long wavelength dynamics
causing the front to develop cusps.
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[. INTRODUCTION mation and the evolution of the shape of the fronts observed
in our numerical simulations.
In this paper we study the dynamics of the front separat-
ing a spatiotemporally chaotic state from a stable steady or- Il. MODEL
dered state. Such situations occur in many experimental set-
tings. In an experiment on a vertically vibrating granular - _ _ i
monolayer of spherdd] both a state at rest on the plate and field £,(x) forward from timen to timen+ 1. With reference
a chaotically bouncing state are stable. When a small pertuf® @ System driven periodically in time.g., as in1]), we
bation is applied to the stationary state, the chaotic state igay think of £,(x), with n=1,2, ..., asbeing the system
observed to invade the stable state through a propagatirigate stroboscopically sampled once each period. Further-
front. In a Rayleigh-Beard convection experimefi2] both  more, we considex=(x,y) to be two dimensional and, for
straight rolls and spiral defect chaos are stable under songmplicity, we take&, to be a scalar field. The CCM model
conditions and it is observed that a region of straight rolls isnappingé, to &,.; consists of two steps: The first step is a
invaded by a region of spiral defect turbulence. nonlinear local operation in which a one-dimensional rivap
For our study we employ a type of model called a con-is applied to£,(x) at each point in space,

tinuum coupled magCCM) introduced in Ref[3]. Models R )
of this type(Sec. I) are appropriate to periodically forced ELX) =M (&,(X)). (1)
systemgsuch as that in the experiment of REf]). In com-
mon with other generic mode|S, like the Comp|ex Ginzburg_The second Step is a tran3|ati0na”y invariant linear Operation
Landau equation or the Swift-Hohenberg equation, ccnveoupling the dynam_ics _at nearby_ spatial Iocations._ The most
models are meant to incorporate the minimal basic propertieg€neral such coupling is conveniently expressed in terms of
capable of reproducing the phenomena of interest. With thighe spatial Fourier transform. K,(k) is the spatial Fourier
in mind we construct our CCM model to incorporate thetransform ofgn(f), then we write&nﬂ(lz) as
essential feature that both a stable steady homogeneous at- . L
tractor and a spatiotemporally chaotic attractor exist. Using Enr1(K)=1(k) & (K), (2)
our CCM model, we numerically investigate two phenom-
ena: (i) the coarsening of the front due to the inherentfrom which &, ,(X) is obtained by inverse Fourier trans-
“noise” associated with the spatiotemporal chd8gc. lll),  forming.
and (i) cusp formation induced by initial long wavelength  The model is then specified by the choice of the nonlinear

perturbations of the front location from the flat std&ec. mapM and the linear spatial couplinﬁIZ). We make these

V). . . . choices so as to include the minimum properties that we
With respect to(i), an important concept used to study pynothesize are relevant for the investigated phenorfha

various coarsening processes is scaling. For a large numbgince we desire the simultaneous existence of a stable steady

of systems(e.g., see Refl4)), it is found that the interface  giate as well as a spatiotemporally chaotic state, we choose

width due to rougheningy(t), increases as a power of time, he map\ to have a stable fixed point attractor and a chaotic

w(t)~t”. The width eventually saturates at a value that in-aetractor. A convenient choice having this property is given
creases as a power of the system simél.,)~L;. These p

scaling properties are also observed in our model, and we

As in Ref.[3], we consider a CCM model that maps a

determine and discuss the scaling exponenasd S that we M(&)=ré+Aexd —(E€—1)%a?]—Aexp—1/o?). (3)
find.
With respect to(ii), we argue that on a long scdlee.,  Referring to Fig. 1 we see that this map has a stable fixed

long compared tow(t)], our fronts propagate at constant point até=0 forr<1. Moreover, any initial point if<<u is
speed in a direction locally normal to the interface. We showattracted to this point. We also see from Fig. 1 that the in-
that this basic property explains the mechanism of cusp fortervalu<£<w is mapped into itself. Thus there (at least
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_____________ applied at points on a square grid, while the spatial coupling
operator(2) employs fast Fourier transforming fromto K
and back.

Thatg(i) =0 is an attractor can be seen by introducing an
initial perturbation at wave numbés, &,exp(k-x). Linear-
ization of the CCM model abOLﬁo()z)=0 then shows that
this perturbation evolves with time t6&,exp(k-x), where
8= 0&M(0)F(K)]",M'(&)=oM/o&. For the param-
eters we chooseM’(0)f(k)<1 for all k [in particular
M’(0)f (ko) <1]. Thus the homogeneous staf(e?) =0isan
attractor for the system. We also find that, as we had antici-
pated, for other initial conditions there is another attractor
which is spatiotemporally chaotic.

Figure 2 shows the properties of the spatiotemporal chaos
produced by our model. Figuré&@ shows the spatial pattern

£,(X) at a representative time. This picture applies to a time

S

u v
gn n=45 evolved from an initial condition wherg,(x) was
_ chosen randomly with uniform distribution betweép=0
FIG. 1. Schemati¢not to scalg of the model map. and&,=7.5. Visually, we observe that the pattern appears to

have a characteristic scale of the orderkgf". This is con-
one attractor in this interval. For the parameter valdes  firmed by the wave number power spectrum, Figh)2We
andw that we investigateA=7.0y =0.40=0.29) there is note that the only length scales in our model &€, the
one attractor ini<<¢<wv and it is chaotic. system sizé.~L,~L,, and the grid size5, and that, by our
Our choice of the spatial couplingk) is similarly moti- choiceL>k51> 6, we had sought to obtain spatiotemporal
vated by a desire for simplicity. We assume that the couplinghaos with properties independentlofand 8. Figure 2b),
is isotropic. Thus we can writé as f(k)=f(k), wherek  which evidences variation on the scalg conforms with this

=|K|. Taking f(k)=0 we write expectation. Further discussion of the form observed for
|A§(k)|2 is given in the Appendix. To characterize the tempo-
f(k)=exg y(k)] (4) ral variation of the patterns, Fig.(@ shows a plot of the
' time correlation functiorC(7) defined as
where y(k) is a wave-number-dependent growth and/or NyN,
damping rate per _p(_ariod. S_ince we want the spatiotemporal C(7r)= N E Cij(7), (6)
chaos to have a finite spatial correlation scale, such a scale xNy ]
must be reflected in our choice ¢{k). Denoting this scale B B
by kal, we make the following simple choid&] for y(k): (& ,(t+) =& DE D&
Ci(n= 5 = : )
1/ k\2 1/K\2 (&;(D—&p)
=gl (12l | © | s
0 0 where( . . .) means time averagé=(¢),N, =L, /4, and

(i,j) denotes theX,y) location of a grid point. As can be
Thus y(k)>0 (growth) for k<<kg, y(k) has its maximum seen from Fig. &) the time correlation function decays to
value atk=kg,, and y(k) becomes strongly negativdamp-  zero with increasing time (wherer is an integer, confirm-
ing) ask becomes large. ing that the temporal behavior is chaotic. We have also ex-
Our numerical implementation of this CCM model em- amined other parameter values for whidh—(5) yields spa-
ploys doubly periodic boundary conditions with periodicity tiotemporal chaos, and we find behavior similar to that in
lengthsL, in x andL, in y. The nonlinear map operator is Figs. 2.

C()}
(b) © (c) FIG. 2. Spatiotemporal chaos of the CCM
0.5 model for A=7.0, r=0.4, andw=0.29. (a) A
snapshot ofgn(i). Bright regions indicate large
0 amplitude.(b) Wave numbfr power spectrum, av-
eraged over 100 frame§(k) is the Fourier trans-
formation ofg(i). (c) Time correlation function
2 _050 T 10 C(7), Eq.(?).
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The main objective of our investigation is to characterize 9100
the dynamics of the interface between a spatiotemporally %&ag}g?@gmo
chaotic state and a stable steady state. In our first set o (b) AM@?;@ -
simulations we focus on an initially flat interfacg=y, at o gﬁf’* "
t=0. After we generate an initial spatiotemporally chaotic * 8
state[Fig. 2a)], we create the interface by setting the ampli- __ £5%
tude ¢ of all grid points withy <y to the stable steady state . ;ﬁ%%a@
value ¢=0. During further iterations, the front between the 2= %gé
chaotic and steady state moves downward, i.e., the chaotic df’- A48
state propagates into the stable steady state, and the fror2 #Agf
coarsengsee Fig. 3. In order to examine the front dynamics 107" A
for long times and save computational time, we use a shifting b
method: On every iterate, we resétto zero in the region {Aﬁ "
adjacent to the bottonyE0) of the periodic box, and, when W5
the front comes close tg=0, we shift the whole system 5" .
upward in they direction. Due to the periodic boundary con- 107 10

r e , . log, -(tL?)
ditions, after this shift there will be a region below the front 100 7%

and abovey=0 that is in the spatiotemporally chaotic re- g5 4 Scaling of width with the sizéa) unscaled andb)

gime, and we then s&t=0 in this region. ) scaled witha=0.49, z=1.81 from whichB=a/z=0.27. Circles
After an initial transient, the scaling properties of the front (| —ga4), diamonds I(,=128), squaresL(,=256), triangles K,
are studied using the following definition of the interface —512) and starsl(,=1024). L, =256 for all cases.

width. First, we calculate the average value&oét fixedy,

~g(y)=f(L)X§(x,y)dx/LX. We then note that the basin bound- also observed in the experiments in Rdfs] and [2]. To

ary between the two attractors of the one-dimensional khap Mminimize the effect of the initial transient, we redefine time

is at the unstable fixed poini,=0.4824(Fig. 1), and that the ~as the total increase in the area of the chaotic state.

averaget for the spatiotemporally chaotic stdteig. 2@)] is As is typical for a front coarsening problefd], the time

approximately four times the critical value. Thus, we define @@nd system size dependence of the mean front widdan

lower boundary of the fronty,, by Z(y,)=u and an upper € described by a scaling functiggu),

boundary of the fronty,, by €(y,)=3u. The width of the t

front is then deflneq asyb—Vvi)- _ _ W(t)=tﬁg(—z) ) (8)
Because of the inherent “noise” generated in the spa- L

tiotemporally chaotic region, the proper quantity to study is

the ensemble averaged mean of the front widths. We calcuHereg(u) is constant fou<1 andg(u)~u~# for us>1. For

late ensembles using many different random initial condit>Lj, the width saturates av~Ly where a= gz is the

tions. Our results for the ensemble averaged widtbf the ~ roughness exponent. Baraband Stanley4] have summa-

front are obtained by averaging{—Yy;) over ten runs for rized the values of the scaling exponents, and3 that are

the largest systerh,= 1024 and over 500 runs for the small- obtained for several experimental systems as well as relevant

estL,=64. The typical coarsening of the front is shown in theoretical results.

Fig. 3. In Fig. 4a) we showw versust for different system sizes.
One observation from our simulations is that the propagaThese data show two characteristic regimes: power law

tion velocity of fronts is constant, except for a few transientgrowth, followed by saturation. The growth exponghtis

initial iterations. That is, the velocity does not depend oncalculated by measuring the slopes of straight line fits to the

time or system size. A constant propagation front velocity isdata before saturation, and the roughness expamésitcal-

X
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initial
sinusoidal
front

y FIG. 5. Geometrical picture of
the trajectories given by Eq§10)

and (11) (a) for t<t. and (b) for

initial - ~——__ (a)
sinusoidal

front

front at >t
——timet< tc front at
X TT—time >t
culated by comparing the saturation widths. Figur)4 Past a critical timé=t_. a cusp develops at the maxima of

showsw/Ly versust/L%, wherea andz have been adjusted the evolved fron{7]. The cusp formation time is determined
to «=0.49 andz=1.81 (corresponding tg8=«/z=0.27). by noting thatdx/dx, first becomes zero at=t.. From Eq.
Consistent with Eq(8), we find the collapse of the data in (10) we obtain

Fig. 4@ to a single scaling function. The exponent values

we obtain are roughly consistent with those of both the two- 1

dimensional Eden model#=0.58=0.3) and the two- t= 2Cy (12)
dimensional Kardar-Parisi-Zhang equatian={1/2,8=1/3) v

[4,6].

Fort>t. there are pairs of values a&f, for which the trajec-
tories given by Eqs(10) and (11) pass through each other.
IV. EVOLUTION OF A NON-FLAT FRONT For a given time greater thar; we refer to the range of,
for which this occurs as the unphysical range. The develop-

We now consider the evolution of a front on large length . o LI
scale. Specifically, we are interested in the case where tr}ment of the unphysical range is illustrated in Fighfwhere

front is initially not flat; that is, the position of the front is he dasohed ([j)OI'tIOP ththe cuLve .ShFWS the result of plotting
initially given by yo=h(xg). Furthermore, we assume that Eqs:(l ) and(11) for the unphysica range. .

0 0/ ! . Figure 6 shows how cusps develop in time. In Fig. 6 the
as the front evolves, the scale on which the front position

varies)~(h/h'), remains large compared to the front width noisy front curves are from our simulations and the smooth
' ' 9 P ' curves are from Eqg10) and (11) with x, restricted to the

physical range. The two cases shown in Fignémely,L,
=L,=128 andL,=L,=1024) illustrate how front roughen-
o _ _ ing becomes of less influence as E®). becomes better sat-
To analyze this situation, we consider that a point on thesfied. For both cases in Fig. 6 the initial sinusoid has ampli-
front moves with a normal velocity whose magnitude, tude kC=1 and wave numbek=4x/L,. Thus from Eq.
lv|=v, is constant in time. This assumption also implies that12) we havet.~1/k~L,. Attimest~t., the roughening is
the direction ofy following the trajectory of a point on the a szmall effect ifkw(t) is smalli7%|ncew~t5 (as;umlng
front is constant in time. This is because the slope of thé/Lx=1), we see thakw(tc) ~ 1/ ~, and roughening will
front, dx/dy, following a trajectory does not change with D€ inconsequential for the large scale front evolutioh,ifs
time; i.e., it depends only on the initial locatioy on the  Sufficiently large. The good agreement of thg=1024 nu-
front and not ort. This is illustrated by the construction in Merical results from our CCM model with the theory, Egs.
Fig. 5a). As shown in the figure, the trajectory line segments(10) and(11), confirms that the front does indeed propagate
are straight, are all of the same length and are normal to at constant \(eIOC|ty in a direction perpendicular tq the !nter-
both the initial front and to the evolved front. Considering anface- In particular, for long length scalésw examined in
initial front position given byy,=h(x,), propagation at a Fig. 6 we see no evidence for curvature dependence of the

veIocityJ normal to the front then yields front velocity.

[>w. 9

X(1)=Xo— (v (x)[1+ (" (x0))?] 24 (10) L, =128 T=t2 L = 1024

\/\/
Y =h(xo) —ot[1+ (W (x0)2]¥2 (1) NN TR NN
T=2tc \,/\_/

At any given time Eqgs(10) and(11) specify the front posi- W

tion parametrically withx, as a parameter. As an example N, et T e
consider the case of an initial sinusoidal undulation of the

front yo=h(xo) =C coskx). As the front propagates, the  FiG. 6. Comparison between theoretical curves and our 2D
initial sinusoidal curve becomes distorted so that the maximaijmulations for two different system sizes. The front curve from our
become sharp and the minima become broad. As can be segiddel is defined as the smallestalue (for given x) at which &
from Fig. 5a) this arises because of the convergid@/erg-  =u, where u=0.4824 is the basin boundary point depicted in
ing) of trajectories that originate near maxirtrainima). Fig. 1.
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FIG. 7. The map Eq(13).

FIG. 8. |&|? versusk compared with Eq(A1).

As a comparison, we have also considered the propaga-
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we see(Fig. 7) that there are two stable fixed points,and
B, and one unstable fixed point Using Eqs.(13), (2), and APPENDIX
(5) with a sinusoidal front with initialization o above the
front and ata below the front, we find that the front shape 12 e . . .
evolves smoothly(with no roughening according to Egs. f(r)]unlq f.°r|f§| [F;gl 2(b)]..ln this connectlprr: v;]/e nate that in
(10) and (11). Thus the cases of a chaotic invading regiont e limit of a wildly _Va“('”g _mapl\ﬂ(g? wit t_ € Lyapu_nov
and a nonchaotic invading region become similar for largeXponent approaching infinitg;(x) will be wildly varying
L, (e.g.,L>w>1/k). in space. This is because small variations_s?,qﬁ) with x are
In conclusion, we have introduced a continuum coupledgreatly amplified whem is applied. Thus, in this limit, the
map model for the study of the dynamics of a front separatspatial correlation function fo&/(x) will be a & function,

ing a region of spatiotemporal chaos from a stable stead SO 2 /(£ (S\\2\ ”
region. This model is applicable to periodically forced sys-gnd [€(K)I"=((£(x))%) independent ok. Thus from Eq.

tems. We find that the front roughens and that this coarsen-

ing obeys a scaling hypothesis, E§). We also investigate P ) g2

the large length scale evolution of a nonplanar front. We find |E(K)[“=((&n(x)) ) F=(k), (A1)
that this evolution is consistent with the hypothesis that, on =~ o _ _

large scale, the front velocity is constant and normal to thgvhich is plotted in Fig. 8 as the dashed line along with the
front. This hypothesis and our numerical simulations indicatedata from Fig. 2b). It is seen that Eq/A1) provides a crude

We now comment on the specific form that we have

the formation of cusp structures in the front. indication of the general form dﬁf(k)|2.

[1] W. Losert, D.G.W. Cooper, and J.P. Gollub, Phys. Re%9E motivated by experimentally observed phenomé&RaMelo,
5855(1999. P.B. Umbanhowar, and H.L. Swinney, Phys. Rev. L&,

[2] I.V. Melnikov, D.A. Egolf, S. Jeanjean, B.B. Plapp, and E. 3838(1995], other choices foM andf were employed. In that
Bodenschatz, ifStochastic Dynamics and Pattern Formation case the objective was to check the hypothesis that period dou-
in Biological and Complex Systemadited by S. Kim, K. J. bling in conjuncthn v_\nth pa_ttern formation at a preferred scale
Lee, T. K. Lim, and W. Sung, AIP Conf. Proc. 50AIP, were the essential ingredients necessary to explain the ob-

served bifurcations and the evolution of time periodic patterns
occurring in a vertically oscillated granular layer of the order
of 10 grains thick.

Woodbury, NY, 2000, p. 36.
[3] S.C. Venkataramani and E. Ott, Phys. Rev. L&f), 3495

(1998. [6] M. Kardar, G. Parisi, and Y.C. Zhang, Phys. Rev. LB6,.889
[4] A.-L. Barabai and H. E. Stanleykractal Concepts in Surface (1986.

Growth (Cambridge University Press, Cambridge, 1995 [7] Cusp formation also occurs for the Kardar-Parisi-Zhang equa-
[5] This general viewpoint was also adopted in R&f] where, tion; see Fig. 1 of Refl6].

016215-5



